1,2- λ^3 AZAPHOSPHININE BY FLASH VACUUM THERMOLYSIS.

Catherine Bourdieu and André Foucaud *

Groupe de Physicochimie Structurale associé au C.N.R.S., Université de Rennes, Campus de Beaulieu, 35042 Rennes, France.

Abstract - $1,2-\lambda^3$ Azaphosphinine **4** is prepared for the first time by flash vacuum thermolysis of 1-tert.octyl 2-phenyl 1,2-dihydro $1,2-\lambda^3$ azaphosphinine. The reaction of **4** with water gives the 1,2-dihydro $1,2-\lambda^5$ azaphosphinine 2-oxide.

 $1,4-\lambda^3$ Azaphosphinine 1 has been prepared from 1,4-dihydro $1,4-\lambda^3$ azaphosphinine.¹ This compound is extremely electrophilic because of the electronegativity of the nitrogen atom and the electronegativity difference between nitrogen and phosphorus. Recent reports ^{2,3} describe the formation of $1,3-\lambda^3$ azaphosphinine 2, which is much less electrophilic than 1. The properties of the $1,2-\lambda^3$ azaphosphinine ring system are unknown. We have previously reported the preparation of several 1,2-dihydro $1,2-\lambda^3$ azaphosphinines 3.⁴ We now describe herein an efficient generation of $1,2-\lambda^3$ azaphosphinine by flash vacuum thermolysis of 3a.

As expected, the dihydroazaphosphinine 3a was cleaved at 600°C, benzene, isobutene and $1,2-\lambda^3$ azaphosphinine 4 distilling off in vacuo.

4, yellow oil. ¹H NMR (CDCl₃) δ 2.38 (s, Me-5) ; 2.51 (d, J_{PH} = 12 Hz, Me-3) ; 7.58 (d, J_{PH} = 9 Hz, H-4) ; 9.11 (d, J_{PH} = 21 Hz, H-6) ; ³¹P NMR δ = 263.3. The strongly low field shifted ³¹P NMR resonance is in good agreement with that of 1,4- λ^3 azaphosphinine.¹ As 1,4- λ^3 azaphosphinines, 1,2- λ^3 azaphosphinine **4** is very sensitive to moisture. The reaction of **4** with water gave the 1,2-dihydro 1,2- λ^5 azaphosphinine 2-oxide 5.

5, oil; ¹H NMR (CDCl₃) δ : 1.81 (s, Me-5); 2.12 (d, J_{PH} = 16 Hz, Me-3); 6.40 (d, J_{PH} = 16.8 Hz, H-6); 6.69 (d, J_{PH} = 29.6 Hz, H-4); 8.20 (d, J_{PH} = 564 Hz, H-2). ¹³C NMR δ = 18.2 (J_{PC} = 16 Hz, Me-3); 18.3 (s, Me-5); 117.7 (J_{PC} = 114 Hz, C-3); 126.8 (J_{PC} = 7 Hz, C-4); 141.8 (J_{PC} = 4 Hz, C-6). ³¹P NMR δ = 1.8; MS (70 eV) m/z (relative intensity) 143

Azaphosphinines 6 and 7 were obtained by trapping 4 with MeSH and iPrNH₂.

6, oil. ¹H NMR δ : 1.79 (s) ; 2.06 (d, J_{PH} = 15 Hz) ; 2.16 (d, J_{PH} = 6.4 Hz) ; 6.03 (d, J_{PH} = 6.4 Hz) ; 6.43 (d, J_{PH} = 9.6 Hz) ; ³¹P NMR δ = 59. 7, oil. ¹H NMR δ : 0.99 (d, J_{PH} = 6 Hz) ; 1.80 (s) ; 2.08 (d, J_{PH} = 13 Hz) ; 3.05 (m) ; 6.10 (s) ; 6.55 (d, J_{PH} = 12 Hz). ³¹P NMR δ : 21.

In the presence of water, the hydrolysis of 6 and 7 gave the azaphosphinine 2-oxide 5. Fast hydrolysis of six membered cyclic phosphonites has previously been observed. 5 The thermolysis of 3b also can give the azaphosphinine 4.

We gratefully thank Dr. J.M. Denis for his assistance in this work.

References

- 1 Märkl, G. and Matthes, D. Angew Chem. Int. Ed. Engl. 1972, 11, 1019.
- 2 Märkl, G. and Dorfmeister, G. Tetrahedron Lett. 1987, 28, 1093.
- 3 Appel, R.; Große-Bley, M.; Sonady, H. and Steglich, W. Phosphorus and Sulfur, 1987, 30, 757.
- 4 Bourdieu, C. and Foucaud, A. Tetrahedron Lett. 1986, 27, 4725; Phosphorus and Sulfur, 1987, 30, 365.
- 5 White, D.W. Phosphorus, 1971, 1, 33.

(Received in France 10 June 1987)